

Through-Wall Synthetic Aperture Radar (TWSAR)

Overview of Canadian R&D

Pascale Sévigny et al. Radar Sensing & Exploitation DRDC - Ottawa Research Center

NATO SET-247 Specialists' Meeting Remote Intelligence of Building Interiors 8-9 May 2017

DRDC | RDDC

Acknowledgements

The DRDC Ottawa radar team:

 David DiFilippo (retired), Brigitte Chan, Tony Laneve, Pietro Reitano, Norm Reed and other collaborators

The DRDC Valcartier LIDAR team:

 Jonathan Fournier, Stéphane Messier, Gilbert Tardif (retired)

Photos by J. Lang, DRDC Ottawa

Acknowledgements

NATO SET-155: Advancing Sensing Through the Walls Technologies

- Oct 2009 December 2014
- Participating nations: US, CA, IT, NO, SWE, FR
- Joint trials in October 2013
- NATO SET-100: Sensing-Through-The-Wall Technologies

Outline

- The TWSAR system
 Overview of capabilities
 Data evaluitation
- Data exploitation

The TWSAR system

The objectives and concept of operation

- To develop novel through-wall radar and LIDAR technologies to generate 3-D images of building interiors and exteriors, including targets of interest within buildings
- The vehicle-mounted system is driven in front of a building of interest
- Standoff distance: typically a few meters to 20 meters
 3-D

The DRDC vehicle-mounted imaging system includes a LIDAR and geo-positionning system

Provides context information

Detects wall features using automatic point cloud processing

Acquires points on targets located behind uncovered windows

The TWSAR radar

- L-band FMCW radar (0.8 to 2.7 GHz)
- Both COTS and custom components
- Constant pulse repetition frequency (PRF)

COTS

In-house development

The TWSAR antennas

- Compact Y-shaped printed bowtie elements
- Element antenna pattern:
 - quasi-omnidirectional for Hplane (azimuth)
 - ≥60 degrees for E-plane (elevation)
- V polarization
- Slow-time MIMO operation for doubled resolution in elevation

bowtie element

Rx antenna array (8 elements)

3-D synthetic aperture radar

- Large radar bandwidth
 - Range or across-track resolution (~12 cm)
- Synthetic aperture radar processing
 - Azimuth or along-track resolution
 - Fixed synthetic aperture angle for equal resolution at all ranges (typically 50° to obtain ~12cm resolution)
- Physical vertical array
 - Elevation resolution (3.4°)
- Time-domain backprojection algorithm (delay-and-sum)
 - Post-processing
 - No wall compensation or mitigation
 - No multipath exploitation

TWSAR capabilities or "It's there." Really?

The basic 3-D SAR image

- 3-D matrix or data cube
- Coordinate axis are aligned with the building, origin at one corner
- Data displayed as three orthogonal slices:
 - Top view
 - Front view
 - Side view

But is it truly there?

Sometimes it's a matter of scaling the SAR images

The through-wall radar can detect targets behind challenging walls

Cinder block wall

IRDDC

10 inches reinforced poured concrete wall

The through-wall radar can detect targets behind challenging walls

8 inches cinder block and 4 inches brick TOP VIEW, logarithmic scale Human target 40 cm behind wall v axis (m) -1 -1 -1 wall target signature 26 25 32 31 30 29 28 x axis (m) FRONT VIEW, linear sca x 10⁻³ -2 -2.5 ο ο relative power -3 axis (m) -3.5 -4.5 -5 2 -5.5 32 31 30 29 28 27 26 25 x axis (m) IRDDC

-10

-20

-30

-40

-50

relative power (dB)

The through-wall radar can detect multiple human targets in a small room

TOP VIEW

Inside the small room are positioned 6 human targets

Squinted SAR geometry

- The antennas have very large beamwidth in azimuth: it allows to process the *same* raw data using various squinted geometries
- Using a squinted SAR geometry:
 - The return from specular targets is minimized
 - The return from non-specular targets remains the same
- Also useful when the non-squint line-of-sight is blocked

Squinted SAR detections

DRDCIRDDC

-16

-15

17

The through-wall radar can provide information on interior room layouts

- Vinyl/gypsum/wood studs building
 - Top view
 - Reference front path image

- With access to two sides of a building
 - Sum of front and side path intensity images

- Using front path only and multiple look angles
 - Sum of three squinted geometry intensity images

The through-wall radar can provide information on the internal wall structure and on anomalies behind the wall

Determining the wall category

- 17 different walls, 5 different categories:
 - 1-vinyl/gypsum/wood studs, 2-cinder blocks, 3-brick+cinder blocks, 4-poured concrete, 5-others
- Using LIDAR occupancy grid of the front wall to determine valid azimuth samples
- TWSAR wall signature features

2-D top view slices of different wall materials

The stop-and-go SAR trajectory for joint imaging and motion detection

- The vehicle approaches a building of interest on a straight path, at constant speed
- It stops in front of the building for approximately 30 seconds
- It then continues on its original path
- Constant Pulse Repetition Frequency (PRF)
- 1-D range information only while stationary

Weighting of samples before azimuth compression

- We use constant integration angle to obtain constant azimuth resolution across the image
- Per unit angle d\u03c6, there are more pulses at large azimuth angles, which causes undesired weighting of the high frequency component of the imagery
- We use the angle between consecutive pulses as a weighting function:

$$\sum_{\phi_i \ge -\Theta/2}^{\phi_i \le +\Theta/2} (\phi_{i+1} - \phi_i) s_i = \Theta s_o$$

where s_o is the signal from an isotropic point target

IRDDC

Motion detection – scenario A

Difference image:

 Consecutive pairs of pulses are subtracted

Spectral images:

direction)

FFT across N pulses (in the slow-time

30 seconds of stationary data

Spectral images

video mode, FFT of 1.5 s of complex data

/magnitude

50

Data exploitation or "Could you please automate this process..."

Automating the stationary human target detection task

- Typical through-wall SAR image contains lots of clutter
- The image texture is blob-like
- Human target signatures are present but buried in clutter
- We are developing automated tools for human target detection:
 - Data processing on the blobs
 - Image processing and supervised learning approaches
 - All the steps are now automated but optimization still required

Thresholding for clutter reduction and identification of candidate targets

- Every voxel is assigned to only one blob using the watershed algorithm
 - one blob per local maximum in the 3-D matrix
- Threshold based on median of blob intensities
 - 50% of the blobs are eliminated
- Wall and strong features are removed using seeded region growing algorithm

Feature extraction and classification

Features

- Related to shape, intensity, neighbourhood, elevation
- Support Vector Machine (SVM) classifier

Training data sets:

- 12 different buildings, 74 data acquisitions, approx. 150 human target signatures
- Various human positions (standing, sitting, holding rifle, etc.)
- Various environments (empty space, nearby furniture, etc.)
- Human target detections by the radar analyst are the "truth" for the classifier
 - Confidence levels were recorded

3-D visualization

- Classifier outcomes: a label as 1 (human) or 0 (other) for each candidate target or blob
- Classifier metrics:
 - Accuracy not useful for large class imbalance problems
 - True Positive Rate (TPR) and False Positive Rate (FPR)
- What is an acceptable FPR? Depends on where the false positives are located in 3-D
- 3-D visualization:
 - Region growing algorithm with seeds at the location of the classifier positives
 - ParaView as the 3-D visualization platform

Motel

mobile LIDAR and classifier image

mobile LIDAR and classifier image + ground-truth LIDAR

B502, cluttered scene

B502

We need:

- More human target and furniture samples
- More and better features
- Better overall understanding
- Behind the wall detector?
- Will there always be a false positive?
- Exploitation of motion information may be required
 - Stop-and-go not always possible
 - 2 (or more) phase centers strategies such as Displaced Phase Center Antenna (DPCA)

A few concluding remarks

Shared a few successes

- TW radar imaging is promising but remains challenging
- We have focused on the stationary human target, aiming for robust approaches

Other signal processing algorithms of interest

- Compressed sensing
- Wall clutter mitigation using e.g. singular value decomposition (SVD)
- Etc, etc.

Other hardware possibilities

Polarization

- Effect of antenna beamwidth
- Trials data are important
 - There are no two buildings alike

TW radar imagery: a tool in the toolbox

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

